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1    EXECUTIVE SUMMARY 

As genomics research moves from an era of data acquisition to one of 

both acquisition and interpretation, new methods are required for organizing 

and prioritizing the data. These methods would allow an initial level of data 

analysis to be carried out before committing resources to a particular genetic 

locus. This JASON study sought to delineate the main problems that must 

be faced in bioinformatics and to identify information technologies that can 

help to overcome those problems. While the current influx of data greatly 

exceeds what biologists have experienced in the past, other scientific disci- 

plines and the commercial sector have been handling much larger datasets for 

many years. Powerful datamining techniques have been developed in other 

fields that, with appropriate modification, could be applied to the biological 

sciences. 

Clearly there is a need for more bioinformaticists, as well as computer 

scientists and engineers who are willing to become involved in bioinformatics 

research. An ample talent pool already exists from which to recruit those in- 

dividuals. The DOE can facilitate cross-fertilization between biologists and 

the non-biological datamining community by sponsoring joint workshops, 

offering research fellowships to computer scientists who are interested in bi- 

ological applications, providing access to the unclassified resources of the 

Advanced Strategic Computing Initiative, and taking advantage of the com- 

mercial sector's willingness to make datamining tools freely available to the 

academic community. 

Greater emphasis must be placed on closing the loop between algorith- 

mic analysis and experimental validation. This will require close cooperation 

between computer scientists and biologists. The DOE should support the de- 

velopment of experimental methods for validating bioinformatics algorithms 

and the establishment of statistical tests that can be used to assess the ro- 

bustness of those algorithms. The DOE should take responsibility for 



ensuring the provenance of the primary data from the major sequencing 

centers and making that data freely available in a generic database format 

with minimal annotation. 



2    BACKGROUND 

The Human Genome Project, and genomics research in general, is mov- 

ing at a rapidly accelerating pace. As recently as two years ago there was 

some doubt as to whether the central goals of the Project would be realized. 

Those goals, as first articulated in April 1990 [1], were to obtain the com- 

plete sequence of the human genome by the end of 2005, and to do so with 

an accuracy of >99.99% per nucleotide position. This would allow the iden- 

tification of all ~ 100,000 genes in the human genome and the recognition 

of the chromosomal location of each of those genes. The total cost of the 

project (U.S. portion) was estimated to be about $2.5 billion and the final 

product would be ~ 3 billion base pairs of "finished" human DNA sequence. 

In May 1998, the genomics community was rocked by the announcement 

of a new private venture, born out of a collaboration between The Institute 

for Genomic Research and Perkin-Elmer Corporation, with the stated aim of 

sequencing the entire human genome by 2001. A new company named Celera 

Genomics was founded to carry out this effort. Celera's approach [2] relies 

on a whole-genome shotgun sequencing strategy, as has proven effective for 

the sequencing of microbial genomes. Whether this strategy can be scaled up 

by three orders of magnitude to the size of the human genome and whether 

it can generate a complete sequence is a matter of debate. Celera plans 

to take advantage of recent improvements in DNA sequencing technology 

involving capillary gel electrophoresis sequencing instruments and associated 

improvements in gel loading and gel reading methods. Specifically, they will 

utilize 230 of the new ABI PRISM 3700 automated DNA sequencers, each 

with a potential throughput of 480 kilobases (kb) of raw sequence data per 

day. Operating 230 instruments at this pace for one year would generate 

more than 10-fold sequence coverage of the human genome. 

In July 1998, JASON conducted a DOE-sponsored study pertaining 

to functional genomics and research opportunities for the period that will 

follow acquisition of the human genome sequence (JASON Report JSR-98- 

315).   That study also included an examination of ongoing developments 



in genome sequencing technology and the impact of Celera's efforts on the 

publicly-funded Human Genome Project. The 1998 Report made the follow- 

ing recommendations with regard to genome sequencing: 

1. Capitalize on and complement Celera's efforts by addressing the short- 

comings of the total shotgun sequencing approach. That approach, 

even if successful, will likely leave a substantial number of sequence 

gaps, most of which will be worth closing. 

2. Adopt a shotgun sequencing strategy at the level of individual BAC 

(bacterial artificial chromosome) clones. Each BAC clone contains 

~ 150 kb of inserted DNA, providing a manageable assembly problem 

while allowing greater sequencing throughput compared to the tradi- 

tional directed sequencing approach. 

3. Transition to capillary gel electrophoresis sequencers as soon as possi- 

ble. These high-throughput instruments will be beneficial for the BAC 

shotgun sequencing strategy and will help meet the seemingly insatiable 

demand for increased sequencing capacity. 

4. Continue advanced technology development, including sequencing meth- 

ods that are not based on gel electrophoresis. More so than any other 

agency, the DOE has the capability to foster long-term technology de- 

velopment in the area of DNA sequencing. 

In October 1998 the NIH and DOE issued revised goals for the Human 

Genome Project [3]. As an interim goal, a "working draft" of the genome 

would be completed by the end of 2001, aiming for >90% sequence coverage 

and an accuracy of >99% per nucleotide position. This draft sequence would 

contain numerous sequence gaps but few physical gaps, and would serve as 

a platform to anchor the finished sequence. The ultimate goal would still be 

to obtain the complete sequence of the human genome with an accuracy of 

>99.99% per nucleotide position. However, the deadline for reaching that 

goal was pushed forward to the end of 2003. This accelerated timetable 

necessitated a more focused approach, relying on five major centers to carry 



out the bulk of the sequencing effort: the DOE Joint Genome Institute, NIH- 

sponsored centers at Baylor College of Medicine, The Whitehead Institute, 

and Washington University School of Medicine, and the Sänger Centre in the 

U.K. Each center would be free to pursue whatever sequencing strategy it 

found most productive. 

For its part, the DOE Joint Genome Institute is moving aggressively to- 

ward adopting new technologies that provide increased sequencing through- 

put. The three centers that make up the Institute (Lawrence Berkeley, 

Lawrence Livermore, and Los Alamos National Laboratories) are moving 

towards a BAC-oriented shotgun sequencing strategy. The Production Se- 

quencing Facility in Walnut Creek, CA is converting entirely to capillary gel 

electrophoresis sequencers. Based on the results of a side-by-side comparison, 

the Institute has chosen to purchase the Molecular Dynamics MegaBACE 

1000 instrument rather than the ABI PRISM 3700. 

In March 1999, the NIH and DOE announced a further accelerated 

timetable for producing the working draft of the human genome, aiming for 

completion in Spring of 2000. In July 1999 the NIH announced that three 

additional centers would be joining the final sequencing campaign: Genome 

Therapeutics Corporation, Stanford University, and the University of Wash- 

ington. It is becoming clear that, regardless of what Celera accomplishes in 

the next few years, the publicly-funded effort will generate a vast amount of 

human genome sequence data and is likely to complete the sequencing of the 

human genome well before the original Project deadline. 

With most attention having been focused on the monumental task of 

the sequencing effort itself, there is now a growing concern in the genomics 

community over problems of data storage and data analysis. The favorite 

metaphor is that of a tidal wave, with biologists drowning in the onrush 

of data [4]. These data are derived not only from genome sequencing, but 

also from sequence annotation, sequence comparison, polymorphism analysis, 

gene expression analysis, and structure-function studies. As the field moves 

from an era of data acquisition to one of both acquisition and interpreta- 

tion, new methods are required for organizing and prioritizing the primary 



data so that an initial level of data analysis can be carried out before com- 

mitting resources to a particular genetic locus. The present JASON study 

sought to delineate the problems that must be faced in bioinformatics and to 

identify information technologies, from either within or outside the genomics 

community, that would be useful in helping to overcome those problems. 



3    ACTIVITIES IN BIOINFORMATICS 

Bioinformatics is loosely defined as the science of database management 

and data analysis pertaining to various types of biological information. In 

the area of genomics, the main activities in bioinformatics are the following: 

1. Sequence assembly - determination of a continuous path across many 

individual DNA sequence reads (~ 0.5 kb each) and resolving any am- 

biguities in the data. 

2. Sequence annotation - deposition of the assembled sequence into a 

database, accompanied by information pertaining to the source, quality, 

and content of the data. 

3. Gene finding - analysis of DNA sequence data for indications of an 

open reading frame that may correspond to an expressed protein. 

4. Analysis of non-coding regions - recognition of regulatory elements, 

inserted sequence elements, and structural features of the chromosome. 

5. Sequence comparison - pairwise alignment of either DNA or protein 

sequences and determination of the degree of similarity between those 

aligned sequences. 

6. Polymorphism analysis - statistical analysis of sequence variation among 

individuals in a population and correlation of that variation with dif- 

ferences in phenotype. 

7. Phylogenetic analysis - sequence comparison between organisms at the 

level of genes, gene families, or genomes, with the aim of understanding 

evolutionary relationships. 

8. Gene expression analysis - measurement of mRNA or protein expres- 

sion levels correlated to differences in cell state or environmental con- 

ditions. 



9. Prediction of RNA and protein structure - computational analysis of 

primary sequence data leading to recognition of secondary and tertiary 

structural motifs. 

10. Prediction of protein function and interactions - computational analy- 

sis of sequence and structural data to infer the functional properties of 

the corresponding protein. 

In conducting this study, JASON heard from investigators working in 

each of the ten areas listed above. The study did not seek to undertake a 

review of scientific progress in these areas. Rather, the aim was to determine 

what computational tools the investigators felt were needed in their research 

and to consider how those tools might be developed. This Report will focus 

on four areas chosen from the above list of bioinformatics topics: gene finding, 

sequence comparison, phylogenetic analysis, and gene expression analysis. 

These will suffice to illustrate the main conclusions of the study. 

3.1    Gene Finding 

There are two general approaches to gene finding that currently are in 

widespread use. One is exemplified by the program GRAIL (Gene Recognition 

and Assembly Internet Link), which employs a neural network model that has 

been trained on known genes and can be used to "predict" new genes based 

on inherent regularities in their primary sequence [5]. GRAIL has under- 

gone several revisions that have added progressively more context-dependent 

information. The most recent incarnation, termed GRAIL-EXP, includes 

pattern matching to the database of ESTs (expressed sequenced tags). The 

other main approach to gene finding employs a hidden Markov model, as ex- 

emplified by the program Genie [6]. The model defines a number of discrete 

states (that in fact may not be "hidden"), corresponding to DNA sequence 

elements, such as triplet codons or intron-exon junctions. An input DNA se- 

quence is used to drive a succession of state transitions, with the probability 

of a particular transition being established by training data that reflects the 

inherent regularity of known genes. 
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Both neural network and hidden Markov models have been successful in 

identifying novel genes. They are widely used by biologists, who tend to have 

little knowledge of the underlying algorithms. These procedures do have some 

shortcomings. First, they are only weakly informed by the biology. The nodes 

in the neural network and the states in the Markov model have superficial 

relevance to actual biological parameters and few attempts have been made 

to overlay other sources of biological information on these models. A notable 

exception is GRAIL-EXP, which steps out of the "black box" by including 

validated experimental data in the model. A second shortcoming is that these 

models tend to ignore long-range DNA sequence information, which may be 

critical in recognizing valid open reading frames. The inputs to the algorithm 

typically consist of consecutive nucleotides or short oligonucleotide strings, 

with long-range sequence information being treated as an implicit property of 

the model. A third shortcoming is that the models ignore post-transcriptional 

changes, such as alternative splicing, RNA editing, ribosomal frameshifting, 

and post-translational modification, that can significantly alter the meaning 

of the primary sequence. 

Other shortcomings of neural network and hidden Markov models per- 

tain to the algorithms themselves. In some cases the training procedure does 

not achieve convergence. These cases tend to be rejected from further con- 

sideration, but may be informative in understanding the limitations of the 

model. Finally, insufficient attention is given to the statistical significance of 

the results that are obtained. Few statisticians are involved in bioinformatics 

research, even though they could make a significant contribution. 

While the developer of a gene finding method usually is aware of its 

shortcomings, the end users tend to utilize the method uncritically and in a 

turn-key fashion. In further improving gene finding methods it will be impor- 

tant to close the loop between bioinformaticists and experimentalists. When 

a predicted gene is either validated or falsified experimentally, that result 

should be communicated back to the developer who can use it to improve 

the search algorithm. Ideally the feedback would occur in a semi-automated 

manner, for example, by including a self-reporting feature in a web-based 

bioinformatics algorithms.  It would be beneficial to develop reliable meth- 



ods for experimental validation of predicted genes, especially those that could 

be implemented on a large scale at major sequencing centers. For example, 

a family of expression cassettes could be developed that are compatible with 

the sequencing vectors and that allow for a rapid test of gene expression in 

various standard cell lines. 

As the number of experimentally validated genes increases, this vali- 

dated information will become more useful in augmenting the gene finding 

procedure. More so than the EST database, the database of validated full- 

length genes will aid in assigning confidence values to predicted genes. Other 

experimental data pertaining to alternative splicing and other forms of post- 

transcriptional modification would be useful as well when accessed through 

a look-up table that complements the primary search algorithm. Closing the 

loop between software specialists and experimentalists will reduce the barrier 

between their respective scientific disciplines, causing both groups to focus 

on the common goal of making gene finding methods more inclusive of the 

relevant biology and therefore more accurate. 

3.2     Sequence Comparison 

The preferred algorithm for DNA and protein sequence comparison is 

BLAST (Basic Local Alignment Search Tool). This method was first devel- 

oped in 1990 [7] and has undergone several refinements since then. A BLAST 

search involves submission of a query sequence that is compared against all 

entries in the available sequence databases. The query sequence is aligned 

against each test sequence, in most cases allowing for the possibility of in- 

sertions or deletions. Positive matches are reported and annotated with the 

score for the number of identical and similar amino acid residues as well as 

the probability that such a match would occur by chance. The most recent 

versions of BLAST allow for either an iterated search that takes into account 

the best matches found in the previous round (PSI-BLAST) or a focused 

search that places special value on sequence patterns that occur within the 

query sequence (PHI BLAST). 
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BLAST is likely to be the most widely utilized piece of bioinformatics 

software. It is used to draw inferences regarding the function of newly- 

identified genes and to search for homologous genes within a gene family or 

among different organisms. The results of a typical BLAST search tend to 

include many false positives, caused by the intrinsic sequence regularity of 

proteins. Most users gladly accept a high rate of false positives because it 

gives them more "hits" to consider and a lower chance of missing the genes 

of marginal sequence similarity that might have high biological significance. 

However, as the database expands and the number of query sequences in- 

creases, there will be less tolerance for false positives. More attention will 

need to be directed toward understanding the sensitivity function associated 

with BLAST and other sequence comparison procedures. It would be useful, 

for example, to randomly degrade the search string in a way that reflects 

normal sequence statistics, and determine which of the matched sequences 

are the first to drop out. The presumption, which remains to be tested, is 

that true matches will tend to outlast false positives as the information is 

progressively degraded. It also would be useful to investigate procedures for 

normalizing the matching function with respect to statistical regularities in 

protein sequence and structure. 

Perhaps the greatest shortcoming of BLAST and related methods is that 

they have weak predictive value for regulatory regions and other non-coding 

portions of the genome. This is a difficult problem because non-coding re- 

gions may be important for understanding function, but tend not to have 

enough sequence regularity to allow meaningful sequence alignments. One 

recourse would be to incorporate phylogenetic data, utilizing sequence infor- 

mation from several different organisms and normalizing for their phyloge- 

netic distance. At present this is difficult to do because of the paucity of 

completed genome sequences. However, the next decade will see an explo- 

sion in the accumulated sequence data, not just from expressed genes but 

from intergenic regions, which will facilitate sequence comparisons involving 

non-coding regions. 

11 



3.3    Phylogenetic Analysis 

In the near future there will be a large number of fully sequenced 

genomes, covering a diverse range of species representing all major branches 

of the tree of life. Techniques for sequence comparison will be applied not 

only to a single query sequence in relation to the sequence database, but 

also to all of the pairwise comparisons that can be made among a set of 

query sequences. These global comparisons will be used to infer phyloge- 

netic relationships and reconstruct evolutionary history. Phylogenetic anal- 

ysis therefore involves combinatorial pairwise alignment, a task that has a 

computational cost of the order 0(nk), where n is the length of the sequence 

and k is the number of sequences being compared. 

More so than most other areas of bioinformatics, phylogenetic analysis 

can benefit from access to high-performance, multi-processor computing. In 

the 1998 JASON Report it was suggested that the DOE should assume a 

strong role in comparative genome sequencing. The DOE already has es- 

tablished its place in comparative genomics by supporting the sequencing of 

archael and eubacterial genomes, and comparative genomics is more closely 

associated with studies of biological diversity than biomedical applications. 

The DOE has in place substantial computing resources within the context 

of the Accelerated Strategic Computing Initiative (ASCI). It is natural to 

suggest that these resources might be leveraged to assist in the development 

and application of algorithms for comparative sequence analysis. 

The three high-performance computing platforms, ASCI Red at Sandia, 

Blue Pacific at Lawrence Livermore, and Blue Mountain at Los Alamos Na- 

tional Laboratories, have projected capabilities in the range of 1-3 teraOps. 

The ongoing commitment to ASCI, in support of the stockpile stewardship 

program and other defense-related needs, ensures that the existing platforms 

will be replaced over the next few years by even more powerful computers. 

This will create an opportunity for making the previous-generation machines 

available for unclassified use. The DOE has established a model for provid- 

ing open access to high-performance computing through its operation of the 

12 



ACL Nirvana Machine at Los Alamos National Laboratory. Bioinformati- 

cists who are carrying out phylogenetic analysis, structure prediction, and 

other computationally intensive tasks have benefited and should continue to 

benefit from access to high-performance computing at the ASCI facilities. 

3.4    Gene Expression Analysis 

One of the most rapidly progressing areas of research in bioinformat- 

ics concerns the analysis of gene expression. Powerful experimental systems 

have been devised that allow one to measure the expression level of all known 

genes in an organism under a defined set of cellular conditions. This is accom- 

plished using expression arrays that contain spatially-ordered DNA probes 

corresponding to each of the genes being interrogated. Total messenger RNA 

is harvested from the cells, labeled during reverse transcription, and allowed 

to hybridize to complementary probes on the array. The intensity of the label 

at each probe position, typically normalized to a control sample, reflects the 

expression level of the corresponding gene. The power of expression arrays 

lies in their high degree of parallelism. A single "gene chip" that is only 1.8 

cm2 may contain 30,000 DNA probes that can be addressed simultaneously. 

The expression state of the cell can be monitored over time in relation to 

cellular events, such as the progression of the cell cycle or the application of 

an external stimulus. 

Expression analysis has the potential to generate vast amounts of data. 

Computational techniques have been developed to organize this data and 

mine it for inherent regularities. One such technique is cluster analysis [8], 

which has been employed in many other areas of data analysis. Clustering 

algorithms may be either referenced to an established hierarchy or allowed 

to self-organize according to some statistical model. When applied to gene 

expression data, the clustering algorithm typically is unsupervised and is 

based on simple pairwise comparisons that result in hierarchical clusters. 

The organization of the clusters is not pre-specified, but there is nonetheless 

a strong observed tendency for genes of related function to fall within the 

13 



same cluster. This behavior can be valuable in inferring the function of an 

unknown gene based on its propensity to cluster with other genes of known 

function. 

One of the shortcomings of cluster analysis as currently applied to gene 

expression data is that there is no established metric for the robustness of 

a cluster. The penalty for expanding or collapsing a cluster is not known, 

nor is the cost function that would allow a gene to belong to more than one 

cluster simultaneously. This shortcoming could be addressed either compu- 

tationally or experimentally by seeking to determine what makes a cluster 

break. The computational approach would involve randomly degrading the 

dataset and observing how the clustering pattern is affected as correlations 

in the expression pattern becomes more tenuous. Such an exercise assumes, 

perhaps incorrectly, that valid clusters will be more resistant to degrada- 

tion of the dataset compared to invalid clusters. The experimental approach 

would involve reducing the expression of one or more genes in a cluster (e.g. 

by antisense inhibition) and determining how the structure of that cluster 

and other clusters in the hierarchy are affected. Such exercises will help to 

define the limits of what constitutes a valid cluster. They may also lead to 

the realization that multi-parent clustering algorithms are needed to provide 

a more accurate description of how gene expression is organized. 

As with gene finding methods, expression analysis could be improved by 

striving to close the loop between computation and experimentation. Predic- 

tions made by clustering algorithms should be validated experimentally and 

the validated examples should be used to refine the clustering algorithms. 

A high-throughput method, such as a two-hybrid system, could be used to 

confirm that some genes in a cluster are indeed functionally related. In- 

formation about the chromosomal location of genes might also assist in the 

interpretation of expression data. Expression patterns could be "spiked" by 

the inclusion of genes that are expressed on a plasmid. If the clustering al- 

gorithms are behaving properly, two plasmid genes that are expressed from 

a common promoter will cluster together very tightly. In general, cluster 

prediction should be treated as an iterative process that requires the close 

interaction of bioinformaticists and experimentalists. 

14 



4    DATA MINING 

Biologists are experiencing a level of data influx that greatly exceeds 

what they have seen in the past. This is true in many areas of biology, but 

especially in the genome sciences. There is much hand-wringing at present 

and a growing sense that something must be done to change the culture 

of biology so that it can cope with the tremendously increased volume of 

data. The private sector, including most major pharmaceutical companies 

and many biotechnology companies, has made a significant investment in 

bioinformatics. Several major universities have initiated research and train- 

ing programs in this area and more are on their way. Individuals calling 

themselves "bioinformaticists" are in great demand today and will continue 

to be so in the years ahead. 

The NIH Working Group on Biomedical Computing recently issued an 

Advisory Committee Report to the NIH Director on the subject of biomedical 

information science and technology [9]. That Report made the following 

specific recommendations: 

1. Establish 5-20 National Programs of Excellence in Biomedical Com- 

puting to help educate researchers in this area. 

2. Establish a new NIH-sponsored Program on information storage, cura- 

tion, analysis, and retrieval (ISCAR). 

3. Increase funding for basic research in biomedical computing through 

R01 grants. 

4. Foster a scalable national computer infrastructure. 

These recommendations are sensible and appropriately place strong emphasis 

on the need to train individuals with skills in both the computational and 

biomedical sciences. The context of the Working Group Report extends 

beyond bioinformatics pertaining to genome sciences and includes all areas 

of biomedical computing.   However, it is genomics issues that are driving 

15 



much of the discussion and the impending availability of the complete human 

genome sequence that is creating much of the sense of urgency. 

4.1    Sociological Issues 

While these are data-intensive times for biologists, it is important to 

note that other scientific disciplines have been handling much larger datasets 

for many years. Astronomers, climate modelers, hydrodynamicists, and 

structural engineers, for example, have been dealing with terabytes of infor- 

mation, while bioinformaticists must face "only" gigabytes of DNA sequence 

data and gene expression data. Outside the sciences the amount of informa- 

tion being gathered and interpreted is often even greater. In the commercial 

sector, for example, data from billions of credit card transactions and cash 

register receipts are processed annually in order to analyze purchasing pat- 

terns and uncover evidence of fraud. In the national security arena, vast 

amounts of electronic and image data are processed in close to real time and 

mined for features that are of special interest. 

The above discussion is not meant to diminish the significance of prob- 

lems that must be faced in bioinformatics, but to point out that these prob- 

lems are likely to be manageable. There are no "hard" computational tasks 

in bioinformatics that would exceed the capabilities of modern computers. 

Adequate processing power and data storage capacity are available to meet 

these needs. High-speed internet connections and high-density physical me- 

dia allow easy transfer of large amounts of data. Heightened concern over 

bioinformatics issues is appropriate, but the present era should be viewed 

more as one of opportunity than of serious obstacles. 

If managing and analyzing vast amounts of data has become routine 

in so many other areas, why haven't the relevant techniques crossed over 

to the biological sciences? There are several reasons for this. First, the 

interpretation of biological data requires special knowledge of biochemistry, 

molecular biology, and cell biology. (A similar statement could be made 

for most other fields.) Second, most biologists interact with computers in a 
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"point-and-click" fashion and have little training in the information sciences. 

Third, few individuals exist who have expertise in both computer sciences and 

biology and, therefore, are in a position to foster closer interaction between 

the two disciplines. Fourth, the rush to obtain the complete human genome 

sequence and other primary sequence data has left little time for analysis. 

Fifth, the techniques for data acquisition are changing rapidly, making it 

uncertain which bioinformatics methods will have lasting value. 

Clearly there is a need for more bioinformaticists. Individuals who are 

just as comfortable thinking about hidden Markov models as transcriptional 

activation will have a profound impact on biology over the next decade. In 

addition, there is a significant need for database engineers, computer scien- 

tists, statisticians, and applied mathematicians who are willing to become 

involved in bioinformatics. An ample talent pool from which to draw those 

individuals already exists, for example, in the so-called KDD (Knowledge 

Discovery in Databases) community. Persons working in this area usually 

have no formal training in biology and would not be capable of initiating a 

Program of Excellence in Biomedical Computing as envisioned by the NIH 

Working Group. But many of these individuals would rather apply their 

craft to human genome sequence data than, say, cash register receipts. They 

should be recruited to participate in bioinformatics research, as will be dis- 

cussed below. 

The KDD community is large and intellectually rigorous. It has a peer 

reviewed journal, Data Mining and Knowledge Discovery, and holds regular 

meetings ranging from small workshops to an annual international confer- 

ence. Of the 52 papers that were chosen for presentation at the upcoming 

"Fifth International Conference on Knowledge Discovery and Datamining", 

none pertain to bioinformatics. This would change if members of the KDD 

community were allowed to integrate with genome scientists as part of a 

bioinformatics research program. Like the physicist who assists a group of 

NMR spectroscopists or the veterinarian who participates in pharmacology 

research, professional dataminers have much to contribute if allowed to work 

as equal partners with biologists who are engaged in large-scale data analysis. 
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The DOE can facilitate cross-fertilization between biologists and datamin- 

ers in several ways. First, it could sponsor a workshop to bring together 

members of the two communities, not to design algorithms, but to talk about 

what is needed in biology and what the various datamining approaches have 

to offer. Second, the DOE could offer research fellowships to computer sci- 

entists who have an interest in biological applications, even if they are not 

well versed in biology. These individuals would be expected to work as part 

of a research team that is handling large amounts of biological information. 

Third, ASCI resources that are available for unclassified use could be of- 

fered as an inducement to attract dataminers to the sequencing centers and 

other DOE-supported laboratories. Fourth, the DOE should take advantage 

of the commercial sector's willingness to make datamining tools available to 

the academic community For example, the IBM Intelligent Miner software 

package can be obtained free of charge for use in scientific research. This 

would also help to build ties to the commercial world of datamining. 

Members of the datamining community who have the courage and desire 

to enter bioinformatics will require some special considerations. They need to 

be supported in their efforts to learn the concepts of biology and techniques 

of genomics research. They should not be segregated in dark computer-filled 

rooms, but made to enter the mix with other members of the research team. 

They should not be expected to provide computer support services for the 

laboratory; this activity should be viewed as part of facilities management 

and not bioinformatics. Finally, and perhaps most sensitively, they require a 

salary that is comparable to what other computer scientists receive. In the 

current job market, this will be higher than the salary of molecular biologists 

who have the same number of years of experience. 

4.2    Database Organization 

An important area of concern is the current lack of standardization in 

genome databases. The de facto standard at present is GenBank, which is an 

annotated collection of all publicly available DNA sequence data, currently 
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consisting of more than 3.4 billion bases in more than 4.6 million sequence 

records. In reality, GenBank is little more than a community data dump. 

There is tremendous variability in the accuracy, completeness, and degree of 

annotation of GenBank entries. While it is useful to have all of the sequence 

information gathered in one location, the uneven quality of the data reduces 

its usefulness for many bioinformatics purposes. 

Prior DOE efforts to build a definitive genome database have failed for 

both scientific and sociological reasons. It was premature then, and still is 

premature, to try to impose a database standard on a field that is changing so 

rapidly. Ultimately the scientific community will determine its own standards 

and specifications. However, there are two important steps that the DOE 

can take now to prepare for that eventuality. First, it can help to guarantee 

the provenance of the primary data, especially from the major sequencing 

centers. This includes the raw sequence data and the assembled sequences 

that are part of both the draft and finished sequencing efforts. Second, the 

DOE can make that primary data freely available to the scientific community 

in the form of a generic database with minimal annotation. This information 

should conform to a low-level format standard, encompassing the raw data, 

statistics regarding its accuracy, and annotation pertaining to the source of 

the data and its context within the genome. 

As discussed in the 1998 JASON Report, a modular approach is needed 

for database management so that the data gathering functions performed by 

experimentalists are separated from the cataloguing and data manipulation 

functions performed by data analysts. This will enable one group of investi- 

gators to focus on data acquisition in the face of changing research methods 

while the other group focuses on data management in the face of changing 

computer technology. So long as the integrity of the primary data is assured, 

it will be possible to translate that data into different formats at a later date. 

By warehousing and distributing the primary data, the DOE can facilitate 

a modular approach to database management and allow a broader range of 

investigators to participate in the analysis of genomics data. It is important 

to avoid the attitude that data generated at one of the sequencing centers 

somehow belongs to that center. The centers are funded to generate data for 
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the scientific community and are obliged to support a policy that allows the 

broadest possible distribution of that data. 

As an increasing number of individuals try their hand at developing 

bioinformatics tools, it will be important to have an objective means of as- 

sessing the utility of those tools. End users should be encouraged to utilize 

tried-and-true methods whenever possible. The DOE should support the 

development of benchmark datasets that can be used to evaluate new al- 

gorithms. If a new algorithm is to replace an existing one, then it must 

first demonstrate its superiority when applied to the benchmark data. The 

process of certifying new hardware or software designs through the use of 

performance benchmarks is well established in computer engineering. The 

developers of protein structure prediction methods have taken a similar ap- 

proach, regularly holding contests to compare the performance of the various 

algorithms. A situation to avoid is one in which each sequencing center ana- 

lyzes its own experimental data according to its own favorite algorithm. The 

preferred situation is one in which all centers make their primary data freely 

available and many different groups compete to develop algorithms that best 

analyze the data. Methods that prove most efficacious can then be offered 

for general use. 
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5    RECOMMENDATIONS 

This is an exciting time in the biological sciences. The acquisition of the 

complete sequence of the human genome is close at hand. Additional data are 

pouring in pertaining to the annotation, analysis, and interpretation of that 

sequence information. Academic, government, and commercial organizations 

are scrambling to develop and implement methods to process the data. Now 

that the primary goals of the Human Genome Project appear to be within 

reach, concern has shifted to the question of how the research community 

will handle the data. Appropriately, the cry has gone out to train more 

computational biologists who can develop software tools to meet the needs 

of genomics research. 

Without diminishing the significance of the current shortfall of bioin- 

formaticists, two assuasive statements should be made. First, the sky is not 

falling. The problems that must be faced in genomics are manageable and 

similar to those that have been addressed in other areas of data analysis. 

Second, do not expect too much from computers. Bioinformatics methods 

produce leads, not answers. It will be necessary to validate those leads ex- 

perimentally and, whenever possible, use the validated information to refine 

the predictive algorithms. 

This study did not seek to review scientific progress in the various areas 

of bioinformatics, but to consider technical and sociological issues that apply 

more broadly to problems of data handling and data analysis in genomics 

research. In general, the picture is a positive one, dominated by a sense 

of great opportunity. The following summary recommendations are meant 

to suggest how the DOE can play an active role in helping to realize that 

opportunity. 

1. Support the development of high-throughput methods for experimental 

validation and subsequent refinement of bioinformatics algorithms. 

2. Support the development of statistical tests to assess the robustness of 

bioinformatics algorithms. 
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3. Allow bioinformaticists access to the non-classified resources of the Ad- 

vanced Strategic Computing Initiative. 

4. Increase training opportunities for individuals skilled in both computer 

science and experimental biology. 

5. Recruit members of the datamining community by supporting joint 

workshops, fellowships, and the greater use of commercial datamining 

tools. 

6. Do not try to impose a standard for database organization and man- 

agement. 

7. Ensure the provenance of the primary data from the major sequencing 

centers and make that data freely available in a generic database format 

with minimal annotation. 

8. Support the development of benchmark datasets to assist in the evalu- 

ation of new bioinformatics algorithms. 

It is important to close the loop between algorithmic analysis and ex- 

perimental validation. This will require close cooperation between computer 

scientists and biologists. Training opportunities should be provided for indi- 

viduals seeking joint skills in these areas. In the meantime, the substantial 

number of people working in the non-biological datamining community pro- 

vides a talent pool from which to draw upon. Despite their lack of expertise 

in the biological sciences, these individuals should be directed to work side- 

by-side with experimentalists who are engaged in the validation and imple- 

mentation of bioinformatics tools. The data analysts need not be affiliated 

with the data gatherers. A modular approach that separates data gather- 

ing from analysis and a distribution system that makes the primary data 

freely available to the scientific community will allow many laboratories to 

participate in data analysis. 
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A    APPENDIX - Algorithmic Methods in Bioin- 
formatics 

The enormous success of molecular biology has resulted in the produc- 

tion of vast amounts of data, leading biologists to seek automated ways of 

parsing and interpreting that data. DNA sequence data is time independent 

and typically is interpreted by establishing a mapping from the primary se- 

quence to the genes that it encodes. Gene expression data typically are time 

dependent and are interpreted as a set of signals that change over time. 

In the case of DNA sequence data, one starts with an ordered set of 

symbols (e.g. the four nucleotides or the 64 triplet codons) drawn from the 

list: 

X = xi,x2,... ,XK, 

and attempts to find the corresponding set of genes: 

G = gi,92,---,9L- 

In other words, one wishes to find the mapping: 

G=M(X), 

from the if-dimensional space of sequence elements to the L-dimensional 

space of associated genes. This situation is fundamentally the same as that 

encountered in database-model associations in essentially all fields of science. 

Nothing is special about bioinformatics except that the data is to be inter- 

preted in terms of genetic sequences and functional macromolecules. 

If the data are time dependent, then one is seeking a time evolution 

relating a signal Xk{t) at time t to the signal at some later time. There are 

typically many signals k, so one is interested in determining the dynamical 

mapping: 

xk(t + 1) = Fkdx^t), x2{t),... xK(t), fi); k = 1,2,... K, 

where // is a set of parameters defining the unknown function Fk{»,p). 
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Finding the map M(«) from observed data on X and G or the function 

F{») from observed data on X(t) is a standard problem. In bioinformatics 

two approaches to this problem are most commonly taken. The first uses 

a universal class of approximation functions termed "neural networks" that 

express essentially any smooth function such as X = M(G) in terms of a 

basis set of "sigmoidal" functions: 

M N 

Xk=   Y1W™ °m  (Yl Tkn 9n + bk)- 
m=l n=l 

The functions a{») are typically logistic or atanh, and the parameters fj, = 

{wn,Tnj,bn} characterize the model. When one selects the number N,J of 

"neural units" and applies training data on the set of X's and the set of 

G's, the parameters can be determined by various means and a model that 

includes these parameters can be developed. The model is then used on a 

new set of sequence data to "predict" the associated genes. 

Because this representation of nonlinear functions is universal, when N 

and J are large enough, it is clear that one can always use such a represen- 

tation to achieve better and better predictions for larger and larger sets of 

parameters and larger and larger sets of validated data on which to train 

those parameters. What is critically missing from this black box approach 

is the interpretation of the myriad of parameters in terms of some biological 

function. Furthermore, the number of parameters can be quite large, from 

several hundreds to several thousands, and the biological justification for this 

large number remains slightly mysterious. How should one interpret the use 

of models such as large neural networks in mapping DNA sequences to genes? 

Perhaps they can be seen as a guide to the user, suggesting what experiments 

might be done to establish that certain sequences do in fact represent genes. 

Similar neural network models have been applied to time series data, 

for example, gene expression over the course of development. In this work, 

difference equations for maps in discrete time or differential equations for 

developmental changes in continuous time are represented by the neural net- 

work and the relevant data parameters are selected by some fitting method. 

In one example, Eric Mjolsness and colleagues [Mjolsness, E., Mann, T., 

Castano, R. k Wold, B. JPL Technical Report JPL-ICTR-99-4, 1999] have 
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attempted to determine the "intensity" of expression Yj(t) of a gene in terms 

of a time constant for the decay of that intensity and a feedback from the 

activity of both that gene and other genes. This is expressed as: 

M 

dY3(t)/dt = F(Y, TjmYm(t) + bj), 

where F(») is another sigmoidal function, chosen for convenience and fa- 

miliarity rather than for any association with the biological processes being 

described. Employing this type of model and determining the function's co- 

efficients with training data, Mjolsness and colleagues were able to "predict" 

the expression time series of other genes. 

Another common approach in bioinformatics involves the use of Hidden 

Markov Models (HMMs) to derive the association between sequence and 

function. When applied in this way, the models typically are probabilistic 

and make the assumption that the present state of the system is independent 

of prior or future states. For example, states that correspond to individual 

nucleotides in a DNA sequence are assumed to be independent of previous 

or subsequent nucleotides. The introduction of probability in what would 

seem to be a deterministic process is partly a way of expressing the presence 

of errors or inherent limits in the data. One replaces definite relations, such 

as X = M(G), with conditional probabilities for a sequence X given a gene 

sequence G : P(X\G). As noise and other errors disappear, this probability 

density becomes a delta function on the appropriate spaces and expresses 

X = M(G) without ambiguity. 

In the HMM approach one associates a succession of state transitions 

among members of the sequence X with the probabilities that at each state 

a "symbol is emitted" which can be related to an observable. Davis Haussler 

and colleagues have employed HMM methods to associate nucleotide triplet 

sequences with observed protein structure [Krogh, A., Brown, M., Mian, I. S., 

Sjolander, K. k Haussler, D. J. Mol Biol. 235, 1501-1531, 1994]. In this 

case, one identifies three types of match states that are positions in three- 

dimensional space within a protein structure and associates with these match 

states one of twenty "emitted" amino acids. From a model of the relationship 

between a sequence of match states and amino acids in a known database, 
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one tries to establish a means of relating a new protein structure to the 

corresponding amino acid sequence. 

In another application of HMMs, investigators sought to obtain the 

most likely sequence of genes given an observed sequence of DNA [Kulp, 

D., Haussler, D., Reese, M. &; Eckman, F. Proceedings of the Conference 

on Intelligent Systems in Molecular Biology '96 (States, D. J., Agarwal, P., 

Gaasterland, T., Hunter L. k Smith, R., Eds.) AAAI/MIT Press, pp. 134- 

142, 1996]. This was done by maximizing the probability P(X, G|model), 

that probability being the product of the individual probabilities along the 

sequence of X's. In this way, it was possible to identify 93% of true exons 

in a dataset. At least 29% of the predicted genes did not match any known 

genes, although the number of false positives was large. 

Studies employing neural networks or HMMs focus on methods for ef- 

ficiently determining the myriad of parameters in the model. The choice of 

a particular model is usually made on the basis of the percentages of correct 

predictions, false positives, and false negatives when applied to novel data 

sets. While this approach seems rational, it begs the question of what funda- 

mental biological information is gained by determining the model parameters. 

The authors of one study pointed to this issue directly: "We believe that the 

answer to the problem of small training sets is to add more prior knowledge 

into the training process. One way to do this is to start with a better initial 

model" [Krogh et al, vide supra]. 

The critical issue with neural networks, HMMs, and other black box 

models is that these methods typically lack a biological rationale for the 

forms of the models, including the nature of the parameterization used to 

generate those forms. One hopes to gain some clue as to the nature of 

the underlying processes, but the connection is usually missing between the 

vast number of parameters and the underlying biological processes that give 

rise to those parameters. Also lacking is the suggestion of how biological 

experiments could be used to verify the main aspects of the model. 

It is reasonable to suggest a series of experiments and associated mod- 

eling efforts that, roughly, run as follows:  (1) choose a set of known gene 
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sequences and their associated upstream and downstream elements; (2) em- 

ploying a portion of those sequences, determine the coefficients in a model 

that incorporates both the kinematic constraints suggested by the model and 

as much of the relevant biological dynamics as can be built into the model 

so that the parameters have a clear association with biological observables; 

(3) verify the model on the remaining portion of the data; (4) apply the 

model to identify the genes within another set of DNA sequences from the 

same organism; (5) verify the predictions of the model using standard lab- 

oratory methods. While this program sounds obvious, there do not appear 

to be many examples of it in the literature. It would provide the kind of 

verification that is necessary if progress is to be made in understanding the 

biological dynamics that underlie the data. Otherwise one is left with black 

boxes having many internal parameters that remain black even after the work 

has been completed. 
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B    APPENDIX - A Cautionary Note Regard- 
ing Hidden Markov Models 

The use of Hidden Markov Models has become widespread in bioinfor- 

matics, although their application in this area is not quite traditional. They 

appear to be utilized primarily for their computational advantages in decid- 

ing which of a large number of parsings of a long string of nucleic acids (or 

many moderate-length strings) is the correct one based on the fact that it 

parses with highest probability. 

On a hidden or partly hidden Markov model assumption, the probability 

of a given parsing is readily computed, quite independently of any secondary 

considerations such as the underlying biology. The answer is given by the 

optimal point the HMM reaches, using either a standard one-way (Viterbi) 

or two-way probability maximizing procedure. It is important to note that 

the optimum found by this procedure is very often a false maximum, hence 

possibly misleading. The presence of symmetries or functional homologies in 

the underlying data almost guarantees the existence of false optima. This 

statement does not refer to local maxima that are not global maxima. It is 

possible that an HMM gets hung up at such a point, for example, a saddle 

point. The concern applies to cases in which there are many global maxima, 

not all of which are biologically relevant. 

If one is only looking for the best parsing, the biological significance 

may be unimportant. But if physical conclusions based on the parameters 

of the hidden Markov process are to be inferred from the optimum, then 

false conclusions may be drawn. In order to illustrate this point it is helpful 

to adopt a notation in which Greek letters represent the hidden states and 

Latin letters represent the visible states of the process. Let P be the true 

transition matrix for the Markov process. Thus P(a, ß) is the conditional 

probability of ß given a particular a. The row vector p is the probability 

distribution of hidden states. The column vector of all l's is denoted by 5. 

Finally the matrix A1 is the diagonal matrix whose a'th diagonal entry is the 

probability that the hidden state a is read out as the visible state i. 
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With this notation it is easy to express the probability of seeing the 

visible string i1; i%, ■ • ■, in- 

pAnpAl2---pAin5. 

For any non-singular H it is also: 

pH(H-lAilH)(H-l<pH){H-lAi2H) ■ ■ ■ (H-lAinH)H-l8. 

Whenever H can be chosen so that all of pH.H^A'H, H~lPH, and H^ö 

have the correct form, the result is two HMMs with the same output statis- 

tics. ("Correct" in this case means, as appropriate, diagonal, row-stochastic, 

non-negative, etc.). Notice that any permutation matrix H meets this re- 

quirement, but this amounts simply to renaming all of the hidden states. 

Suppose, however, that two rows of the transition matrix P are the 

same, say the first and second rows. From Bayes Theorem, or simply from 

the definition of conditional probability, it is straightforward to infer that 

the first two columns also are the same. Thus H~lPH = P, where H is the 

permutation matrix interchanging the first and second states. Then, without 

altering P, each A1 may be replaced by H~lAlH to produce an HMM with 

the same visible statistics. 

More generally, if H~lPH = P for some permutation matrix H, then 

P may be left unchanged and each A1 may be replaced by H~lAlH. Indeed, 

P may be left unchanged and each A1 may be replaced by H~kAlHk for any 

power k of the original permutation matrix H. Thus the peculiar symmetry 

P = H~lPH leads to many statistically equivalent HMMs. 

It is not clear if nature has tended to build such symmetries into P, the 

functional units of the gene, assuming that this modeling bears some relation 

to the true state of affairs. There are some obvious symmetries within the 

structure of certain genes and regulatory elements. There may be other 

hidden symmetries, for example, a permutation H such that H~lAlH = A1 

for all i. In this case, the Az,s could be left unchanged and P could be 

replaced by H~lPH. 

More substantial perturbations are possible. Let K = cl + dH, where 

/ is the identity matrix and c + d= 1. Then K commutes with all the ^4l's, 
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so they may be left unchanged and P may be replaced by K~lPK, provided 

only that it and pK have non-negative entries, which is almost surely true 

for small c or small d. This strongly suggests the possibility of a whole ridge 

of optima for some HMMs. 

The difficulties pointed out here may not be a problem for some datasets 

in bioinformatics, and in all likelihood can be remedied if one is aware of their 

possibility. These remarks, therefore, are to be regarded as cautionary. 
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